Neurodegenerative diseases present an increasing problem as the world’s population ages; thus, the discovery of new drugs that prevent diseases such as Alzheimer’s, and Parkinson’s diseases are vital. In this… Click to show full abstract
Neurodegenerative diseases present an increasing problem as the world’s population ages; thus, the discovery of new drugs that prevent diseases such as Alzheimer’s, and Parkinson’s diseases are vital. In this study, Rhinacanthin-C and -D were isolated from Rhinacanthus nasustus, using ethyl acetate, followed by chromatography to isolate Rhinacanthin-C and -D. Both compounds were confirmed using NMR and ultra-performance-LCMS. Using glutamate toxicity in HT-22 cells, we measured cell viability and apoptosis, ROS build-up, and investigated signaling pathways. We show that Rhinacanthin-C and 2-hydroxy-1,4-naphthoquinone have neuroprotective effects against glutamate-induced apoptosis in HT-22 cells. Furthermore, we see that Rhinacanthin-C resulted in autophagy inhibition and increased ER stress. In contrast, low concentrations of Rhinacanthin-C and 2-hydroxy-1,4-naphthoquinone prevented ER stress and CHOP expression. All concentrations of Rhinacanthin-C prevented ROS production and ERK1/2 phosphorylation. We conclude that, while autophagy is present in HT-22 cells subjected to glutamate toxicity, its inhibition is not necessary for cryoprotection.
               
Click one of the above tabs to view related content.