LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Hybridization Approach to Identify Salicylanilides as Inhibitors of Tubulin Polymerization and Signal Transducers and Activators of Transcription 3 (STAT3)

Photo by dkfra19 from unsplash

The superimposition of the X-ray complexes of cyclohexanediones (i.e., TUB015), described by our research group, and nocodazole, within the colchicine binding site of tubulin provided an almost perfect overlap of… Click to show full abstract

The superimposition of the X-ray complexes of cyclohexanediones (i.e., TUB015), described by our research group, and nocodazole, within the colchicine binding site of tubulin provided an almost perfect overlap of both ligands. This structural information led us to propose hybrids of TUB015 and nocodazole using a salicylanilide core structure. Interestingly, salicylanilides, such as niclosamide, are well-established signal transducers and activators of transcription (STAT3) inhibitors with anticancer properties. Thus, different compounds with this new scaffold have been synthesized with the aim to identify compounds inhibiting tubulin polymerization and/or STAT3 signaling. As a result, we have identified new salicylanilides (6 and 16) that showed significant antiproliferative activity against a panel of cancer cells. Both compounds were able to reduce the levels of p-STAT3Tyr705 without affecting the total expression of STAT3. While compound 6 inhibited tubulin polymerization and arrested the cell cycle of DU145 cells at G2/M, similar to TUB015, compound 16 showed a more potent effect on inhibiting STAT3 phosphorylation and arrested the cell cycle at G1/G0, similar to niclosamide. In both cases, no toxicity towards PBMC cells was detected. Thus, the salicylanilides described here represent a new class of antiproliferative agents affecting tubulin polymerization and/or STAT3 phosphorylation.

Keywords: activators transcription; transducers activators; signal transducers; transcription stat3; tubulin polymerization; polymerization

Journal Title: Pharmaceuticals
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.