LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Identification of Potential Allosteric Site Binders of Indoleamine 2,3-Dioxygenase 1 from Plants: A Virtual and Molecular Dynamics Investigation

Photo by robbie36 from unsplash

Ligand and structure-based computational screenings were carried out to identify flavonoids with potential anticancer activity. Kushenol E, a flavonoid with proven anticancer activity and, at the same time, an allosteric… Click to show full abstract

Ligand and structure-based computational screenings were carried out to identify flavonoids with potential anticancer activity. Kushenol E, a flavonoid with proven anticancer activity and, at the same time, an allosteric site binder of the enzyme indoleamine 2,3-dioxygenase-1 (IDO1), was used as the reference compound. Molecular docking and molecular dynamics simulations were performed for the screened flavonoids with known anticancer activity. The following two of these flavonoids were identified as potential inhibitors of IDO1: dichamanetin and isochamanetin. Molecular dynamics simulations were used to assess the conformational profile of IDO1-flavonoids complexes, as well as for calculating the bind-free energies.

Keywords: anticancer activity; indoleamine dioxygenase; molecular dynamics; allosteric site

Journal Title: Pharmaceuticals
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.