LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Oxidative Stress-Induced Silver Nano-Carriers for Chemotherapy

Photo from wikipedia

Recently, silver nanoparticles (AgNPs) have been extensively explored in a variety of biological applications, especially cancer treatment. AgNPs have been demonstrated to exhibit anti-tumor effects through cell apoptosis. This study… Click to show full abstract

Recently, silver nanoparticles (AgNPs) have been extensively explored in a variety of biological applications, especially cancer treatment. AgNPs have been demonstrated to exhibit anti-tumor effects through cell apoptosis. This study intends to promote cell apoptosis further by increasing oxidative stress. AgNPs are encapsulated by biocompatible and biodegradable polyaspartamide (PA) (PA-AgNPs) that carries the anti-cancer drug Doxorubicin (Dox) to inhibit cancer cells primarily. PA-AgNPs have an average hydrodynamic diameter of 130 nm, allowing them to move flexibly within the body. PA-AgNPs show an excellent targeting capacity to cancer cells when they are conjugated to biotin. In addition, they release Dox efficiently by up to 88% in cancer environments. The DCFDA experiment demonstrates that the Dox-carried PA-AgNPs generate reactive oxidation species intensively beside 4T1 cells. The MTT experiment confirms that PA-AgNPs with Dox may strongly inhibit 4T1 cancer cells. Furthermore, the in vivo study confirms that PA-AgNPs with Dox successfully inhibit tumors, which are about four times smaller than the control group and have high biosafety that can be applied for chemotherapy.

Keywords: cancer; induced silver; oxidative stress; stress induced; cancer cells

Journal Title: Pharmaceuticals
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.