LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Possible Explanation for the Low Penetrance of Pathogenic KCNE1 Variants in Long QT Syndrome Type 5

Photo from wikipedia

Long QT syndrome (LQTS) is an inherited cardiac rhythm disorder associated with increased incidence of cardiac arrhythmias and sudden death. LQTS type 5 (LQT5) is caused by dominant mutant variants… Click to show full abstract

Long QT syndrome (LQTS) is an inherited cardiac rhythm disorder associated with increased incidence of cardiac arrhythmias and sudden death. LQTS type 5 (LQT5) is caused by dominant mutant variants of KCNE1, a regulatory subunit of the voltage-gated ion channels generating the cardiac potassium current IKs. While mutant LQT5 KCNE1 variants are known to inhibit IKs amplitudes in heterologous expression systems, cardiomyocytes from a transgenic rabbit LQT5 model displayed unchanged IKs amplitudes, pointing towards the critical role of additional factors in the development of the LQT5 phenotype in vivo. In this study, we demonstrate that KCNE3, a candidate regulatory subunit of IKs channels minimizes the inhibitory effects of LQT5 KCNE1 variants on IKs amplitudes, while current deactivation is accelerated. Such changes recapitulate IKs properties observed in LQT5 transgenic rabbits. We show that KCNE3 accomplishes this by displacing the KCNE1 subunit within the IKs ion channel complex, as evidenced by a dedicated biophysical assay. These findings depict KCNE3 as an integral part of the IKs channel complex that regulates IKs function in cardiomyocytes and modifies the development of the LQT5 phenotype.

Keywords: iks; long syndrome; kcne1; kcne1 variants; lqt5; type

Journal Title: Pharmaceuticals
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.