LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Facile Entry to Pharmaceutically Important 3-Difluoromethyl-Quinoxalin-2-Ones Enabled by Visible-Light-Driven Difluoromethylation of Quinoxalin-2-Ones

Photo by kylejglenn from unsplash

CF2H moiety has a significant potential utility in drug design and discovery, and the incorporation of CF2H into biologically active molecules represents an important and efficient strategy for seeking lead… Click to show full abstract

CF2H moiety has a significant potential utility in drug design and discovery, and the incorporation of CF2H into biologically active molecules represents an important and efficient strategy for seeking lead compounds and drug candidates. On the other hand, quinoxalin-2-one is of great interest to pharmaceutical chemists as a common skeleton frequently occurring in plenty of natural products and bioactive compounds. Herein, we reported a practical and efficient protocol for the synthesis of 3-CF2H-quinoxalin-2-ones. Thus, in the presence of 3 mol% of photocatalyst and S-(difluoromethyl)sulfonium salt as difluoromethyl radical sources, a wide range of quinoxalin-2-ones readily underwent a visible-light redox-catalyzed difluoromethylation reaction, to deliver structurally diverse 3-difluoromethyl-quinoxalin-2-ones. We believe that this would facilitate increasing chances and possibilities for seeking potential lead compounds and drug candidates and further boost the development of fluorine-containing pharmaceuticals.

Keywords: difluoromethylation; facile entry; difluoromethyl quinoxalin; quinoxalin ones; quinoxalin; visible light

Journal Title: Pharmaceuticals
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.