LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Physically Crosslinked Chondroitin Sulfate (CS)–Metal Ion (M: Fe(III), Gd(III), Zn(II), and Cu(II)) Particles for Versatile Applications and Their Biosafety

Photo by viazavier from unsplash

Chondroitin sulfate (CS), a well-known glycosaminoglycan, was physically crosslinked with Fe(III), Gd(III), Zn(II), and Cu(II) ions to obtain CS-Fe(III), CS-Gd(III), CS-Zn(II), and CS-Cu(II) polymeric particles for multipurpose biological applications. The… Click to show full abstract

Chondroitin sulfate (CS), a well-known glycosaminoglycan, was physically crosslinked with Fe(III), Gd(III), Zn(II), and Cu(II) ions to obtain CS-Fe(III), CS-Gd(III), CS-Zn(II), and CS-Cu(II) polymeric particles for multipurpose biological applications. The CS–metal ion-containing particles in the micrometer to a few hundred nanometer size range are injectable materials for intravenous administration. The CS–metal ion-containing particles are safe biomaterials for biological applications because of their perfect blood compatibility and no significant cytotoxicity on L929 fibroblast cells up to a 10 mg/mL concentration. Furthermore, CS-Zn(II) and CS-Cu(II) particles show excellent antibacterial susceptibility, with 2.5–5.0 mg/mL minimum inhibition concentration (MIC) values against Escherichia coli and Staphylococcus aureus. Moreover, the in vitro contrast enhancement abilities of aqueous CS–metal ion particle suspensions in magnetic resonance imaging (MRI) were determined by obtaining T1- and T2-weighted MR images using a 0.5 Tesla MRI scanner and by calculating the water proton relaxivities. Therefore, these CS-Fe(III), CS-Gd(III), CS-Zn(II), and CS-Cu(II) particles have significant potential as antibacterial additive materials and MRI contrast enhancement agents with less toxicity.

Keywords: metal ion; physically crosslinked; chondroitin sulfate; iii; iii iii

Journal Title: Pharmaceuticals
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.