The use of synthetic medication for treating alopecia is restricted because of systemic exposure and related negative effects. Beta-sitosterol (β-ST), a natural chemical, has lately been studied for its potential… Click to show full abstract
The use of synthetic medication for treating alopecia is restricted because of systemic exposure and related negative effects. Beta-sitosterol (β-ST), a natural chemical, has lately been studied for its potential to promote hair development. The cubosomes with dissolving microneedles (CUBs-MND) created in this study may be a useful starting point for the creation of a sophisticated dermal delivery system for β-ST. Cubosomes (CUBs) were prepared by the emulsification method, using glyceryl monooleate (GMO) as a lipid polymer. CUBs were loaded with dissolving microneedles (MND) fabricated with HA and a PVP-K90 matrix. An ex vivo skin permeation study and an in vivo hair growth efficacy test of β-ST were performed with both CUB and CUB-MND. The average particle size of the CUBs was determined to be 173.67 ± 0.52 nm, with a low polydispersity index (0.3) and a high zeta potential value that prevents the aggregate formation of dispersed particles. When compared to CUBs alone, CUBs-MND displayed higher permeating levels of β-ST at all-time points. In the animals from the CUB-MND group, significant hair development was observed. According to the results of the current investigation, CUBs that integrate dissolving microneedles of β-ST are superior in terms of transdermal skin penetration and activity for the treatment of alopecia.
               
Click one of the above tabs to view related content.