LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Comparative Study on the Effect of Phenolics and Their Antioxidant Potential of Freeze-Dried Australian Beach-Cast Seaweed Species upon Different Extraction Methodologies

Photo by oulashin from unsplash

Brown seaweed is rich in phenolic compounds and has established health benefits. However, the phenolics present in Australian beach-cast seaweed are still unclear. This study investigated the effect of ultrasonication… Click to show full abstract

Brown seaweed is rich in phenolic compounds and has established health benefits. However, the phenolics present in Australian beach-cast seaweed are still unclear. This study investigated the effect of ultrasonication and conventional methodologies using four different solvents on free and bound phenolics of freeze-dried brown seaweed species obtained from the southeast Australian shoreline. The phenolic content and their antioxidant potential were determined using in vitro assays followed by identification and characterization by LC-ESI-QTOF-MS/MS and quantified by HPLC-PDA. The Cystophora sp. displayed high total phenolic content (TPC) and phlorotannin content (FDA) when extracted using 70% ethanol (ultrasonication method). Cystophora sp., also exhibited strong antioxidant potential in various assays, such as DPPH, ABTS, and FRAP in 70% acetone through ultrasonication. TAC is highly correlated to FRAP, ABTS, and RPA (p < 0.05) in both extraction methodologies. LC-ESI-QTOF-MS/MS analysis identified 94 and 104 compounds in ultrasound and conventional methodologies, respectively. HPLC-PDA quantification showed phenolic acids to be higher for samples extracted using the ultrasonication methodology. Our findings could facilitate the development of nutraceuticals, pharmaceuticals, and functional foods from beach-cast seaweed.

Keywords: antioxidant potential; australian beach; freeze dried; cast seaweed; seaweed species; beach cast

Journal Title: Pharmaceuticals
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.