An approach combining quality by design (QbD) and the discrete element method (DEM) is proposed to establish an effective scale-up strategy for the blending process of an amlodipine formulation prepared… Click to show full abstract
An approach combining quality by design (QbD) and the discrete element method (DEM) is proposed to establish an effective scale-up strategy for the blending process of an amlodipine formulation prepared by the direct compression method. Critical process parameters (CPPs) for intermediate critical quality attributes (IQAs) were identified using risk assessment (RA) in the QbD approach. A Box–Behnken design was applied to obtain the operating space for a laboratory-scale. A DEM model was developed by the input parameters for the amlodipine formulation; blending was simulated on a laboratory-scale V-blender (3 L) at optimal settings. The efficacy and reliability of the DEM model was validated through a comparison of simulation and experimental results. Change of operating space was evaluated using the validated DEM model when scaled-up to pilot-scale (10 L). Pilot-scale blending was simulated on a V-blender and double-cone blender at the optimal settings derived from the laboratory-scale operating space. Both pilot-scale simulation results suggest that blending time should be lower than the laboratory-scale optimized blending time to meet target values. These results confirm the change of operating space during the scale-up process. Therefore, this study suggests that a QbD-integrated DEM simulation can be a desirable approach for an effective scale-up strategy.
               
Click one of the above tabs to view related content.