Recently, the electrospinning (ES) process has been extensively studied due to its potential applications in various fields, particularly pharmaceutical and biomedical purposes. The production rate using typical ES technology is… Click to show full abstract
Recently, the electrospinning (ES) process has been extensively studied due to its potential applications in various fields, particularly pharmaceutical and biomedical purposes. The production rate using typical ES technology is usually around 0.01–1 g/h, which is lower than pharmaceutical industry production requirements. Therefore, different companies have worked to develop electrospinning equipment, technological solutions, and electrospun materials into large-scale production. Different approaches have been explored to scale-up the production mainly by increasing the nanofiber jet through multiple needles, free-surface technologies, and hybrid methods that use an additional energy source. Among them, needleless and centrifugal methods have gained the most attention and applications. Besides, the production rate reached (450 g/h in some cases) makes these methods feasible in the pharmaceutical industry. The present study overviews and compares the most recent ES approaches successfully developed for nanofibers’ large-scale production and accompanying challenges with some examples of applied approaches in drug delivery systems. Besides, various types of commercial products and devices released to the markets have been mentioned.
               
Click one of the above tabs to view related content.