LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Design and Evaluation of Dissolving Microneedles for Enhanced Dermal Delivery of Propranolol Hydrochloride

Photo from wikipedia

Oral propranolol hydrochloride has been the first-line treatment for infantile hemangioma (IH), whereas systemic exposure to propranolol has the potential of causing serious adverse reactions. Dermal delivery of propranolol is… Click to show full abstract

Oral propranolol hydrochloride has been the first-line treatment for infantile hemangioma (IH), whereas systemic exposure to propranolol has the potential of causing serious adverse reactions. Dermal delivery of propranolol is preferable due to high local drug concentration and fewer adverse effects. However, propranolol hydrochloride (BCS class I) is highly hydrophilic and has difficulty in penetrating the stratum corneum (SC) barrier. Dissolving microneedles (MNs) are an efficient tool for overcoming the barrier of the SC and enhancing dermal drug delivery. In this study, propranolol hydrochloride-loaded dissolving MNs were fabricated by using hyaluronic acid and polyvinyl pyrrolidone as matrix materials. Controllable drug loading in needle tips was achieved by a two-step casting procedure. The needles were good in mechanical strength for penetrating the SC while presented excellent dissolving capability for releasing propranolol hydrochloride. In comparison with the solution counterpart, irrespective of being applied to intact skin or solid MNs-pretreated skin, dissolving MNs significantly increased the permeability and skin retention of propranolol. In conclusion, dissolving MNs could be a potential approach for enhancing dermal delivery of propranolol to treat IH.

Keywords: delivery propranolol; dermal delivery; propranolol hydrochloride; propranolol

Journal Title: Pharmaceutics
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.