LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Critical Overview of FDA and EMA Statistical Methods to Compare In Vitro Drug Dissolution Profiles of Pharmaceutical Products

Photo from wikipedia

A drug dissolution profile is one of the most critical dosage form characteristics with immediate and controlled drug release. Comparing the dissolution profiles of different pharmaceutical products plays a key… Click to show full abstract

A drug dissolution profile is one of the most critical dosage form characteristics with immediate and controlled drug release. Comparing the dissolution profiles of different pharmaceutical products plays a key role before starting the bioequivalence or stability studies. General recommendations for dissolution profile comparison are mentioned by the EMA and FDA guidelines. However, neither the EMA nor the FDA provides unambiguous instructions for comparing the dissolution curves, except for calculating the similarity factor f2. In agreement with the EMA and FDA strategy for comparing the dissolution profiles, this manuscript provides an overview of suitable statistical methods (CI derivation for f2 based on bootstrap, CI derivation for the difference between reference and test samples, Mahalanobis distance, model-dependent approach and maximum deviation method), their procedures and limitations. However, usage of statistical approaches for the above-described methods can be met with difficulties, especially when combined with the requirement of practice for robust and straightforward techniques for data evaluation. Therefore, the bootstrap to derive the CI for f2 or CI derivation for the difference between reference and test samples was selected as the method of choice.

Keywords: drug dissolution; dissolution profiles; pharmaceutical products; dissolution; fda

Journal Title: Pharmaceutics
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.