LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Advanced Microfluidic Technologies for Lipid Nano-Microsystems from Synthesis to Biological Application

Photo from wikipedia

Microfluidics is an emerging technology that can be employed as a powerful tool for designing lipid nano-microsized structures for biological applications. Those lipid structures can be used as carrying vehicles… Click to show full abstract

Microfluidics is an emerging technology that can be employed as a powerful tool for designing lipid nano-microsized structures for biological applications. Those lipid structures can be used as carrying vehicles for a wide range of drugs and genetic materials. Microfluidic technology also allows the design of sustainable processes with less financial demand, while it can be scaled up using parallelization to increase production. From this perspective, this article reviews the recent advances in the synthesis of lipid-based nanostructures through microfluidics (liposomes, lipoplexes, lipid nanoparticles, core-shell nanoparticles, and biomimetic nanovesicles). Besides that, this review describes the recent microfluidic approaches to produce lipid micro-sized structures as giant unilamellar vesicles. New strategies are also described for the controlled release of the lipid payloads using microgels and droplet-based microfluidics. To address the importance of microfluidics for lipid-nanoparticle screening, an overview of how microfluidic systems can be used to mimic the cellular environment is also presented. Future trends and perspectives in designing novel nano and micro scales are also discussed herein.

Keywords: technologies lipid; lipid nano; advanced microfluidic; nano microsystems; microsystems synthesis; microfluidic technologies

Journal Title: Pharmaceutics
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.