LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

State-of-the-Art Review of Artificial Neural Networks to Predict, Characterize and Optimize Pharmaceutical Formulation

Photo from wikipedia

During the development of a pharmaceutical formulation, a powerful tool is needed to extract the key points from the complicated process parameters and material attributes. Artificial neural networks (ANNs), a… Click to show full abstract

During the development of a pharmaceutical formulation, a powerful tool is needed to extract the key points from the complicated process parameters and material attributes. Artificial neural networks (ANNs), a promising and more flexible modeling technique, can address real intricate questions in a high parallelism and distributed pattern in the manner of biological neural networks. The data mined and analyzing based on ANNs have the ability to replace hundreds of trial and error experiments. ANNs have been used for data analysis by pharmaceutics researchers since the 1990s and it has now become a research method in pharmaceutical science. This review focuses on the latest application progress of ANNs in the prediction, characterization and optimization of pharmaceutical formulation to provide a reference for the further interdisciplinary study of pharmaceutics and ANNs.

Keywords: neural networks; pharmaceutical formulation; review; state art; artificial neural

Journal Title: Pharmaceutics
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.