(1) Background: An important concomitant of stroke is neuroinflammation. Pomalidomide, a clinically available immunomodulatory imide drug (IMiD) used in cancer therapy, lowers TNF-α generation and thus has potent anti-inflammatory actions.… Click to show full abstract
(1) Background: An important concomitant of stroke is neuroinflammation. Pomalidomide, a clinically available immunomodulatory imide drug (IMiD) used in cancer therapy, lowers TNF-α generation and thus has potent anti-inflammatory actions. Well-tolerated analogs may provide a stroke treatment and allow evaluation of the role of neuroinflammation in the ischemic brain. (2) Methods: Two novel pomalidomide derivatives, 3,6′-dithiopomalidomide (3,6′-DP) and 1,6′-dithiopomalidomide (1,6′-DP), were evaluated alongside pomalidomide in a rat middle cerebral artery occlusion (MCAo) stroke model, and their anti-inflammatory actions were characterized. (3) Results: Post-MCAo administration of all drugs lowered pro-inflammatory TNF-α and IL1-β levels, and reduced stroke-induced postural asymmetry and infarct size. Whereas 3,6′- and 1,6′-DP, like pomalidomide, potently bound to cereblon in cellular studies, 3,6′-DP did not lower Ikaros, Aiolos or SALL4 levels—critical intermediates mediating the anticancer/teratogenic actions of pomalidomide and IMiDs. 3,6′-DP and 1,6′-DP lacked activity in mammalian chromosome aberration, AMES and hERG channel assays –critical FDA regulatory tests. Finally, 3,6′- and 1,6′-DP mitigated inflammation across rat primary dopaminergic neuron and microglia mixed cultures challenged with α-synuclein and mouse LPS-challenged RAW 264.7 cells. (4) Conclusion: Neuroinflammation mediated via TNF-α plays a key role in stroke outcome, and 3,6′-DP and 1,6′-DP may prove valuable as stroke therapies and thus warrant further preclinical development.
               
Click one of the above tabs to view related content.