LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

pH Sensitive Pluronic Acid/Agarose-Hydrogels as Controlled Drug Delivery Carriers: Design, Characterization and Toxicity Evaluation

Photo from wikipedia

The objective of this study was to fabricate and evaluate a pH sensitive cross-linked polymeric network through the free radical polymerization technique for the model drug, cyclophosphamide, used in the… Click to show full abstract

The objective of this study was to fabricate and evaluate a pH sensitive cross-linked polymeric network through the free radical polymerization technique for the model drug, cyclophosphamide, used in the treatment of non-Hodgkin’s lymphoma. The Hydrogels were prepared using a polymeric blend of agarose, Pluronic acid, glutaraldehyde, and methacrylic acid. The prepared hydrogels were characterized for drug loading (%), swelling pattern, release behavior, the ingredient’s compatibility, structural evaluation, thermal integrity, and toxicity evaluation in rabbits. The new polymer formation was evident from FTIR findings. The percentage loaded into the hydrogels was in the range of 58.65–75.32%. The developed hydrogels showed significant differences in swelling dynamics and drug release behavior in simulated intestinal fluid (SIF) when compared with simulated gastric fluid (SGF). The drug release was persistent and performed in a controlled manner for up to 24 h. A toxicity study was conducted on white albino rabbits. The developed hydrogels did not show any signs of ocular, skin, or oral toxicity; therefore, these hydrogels can be regarded as safe and potential carriers for controlled drug delivery in biomedical applications.

Keywords: toxicity evaluation; drug; toxicity; pluronic acid

Journal Title: Pharmaceutics
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.