LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Active Potential of Bacterial Cellulose-Based Wound Dressing: Analysis of Its Potential for Dermal Lesion Treatment

Photo by schluditsch from unsplash

The use of innate products for the fast and efficient promotion of healing process has been one of the biomedical sector’s main bets for lesion treatment modernization process. The aim… Click to show full abstract

The use of innate products for the fast and efficient promotion of healing process has been one of the biomedical sector’s main bets for lesion treatment modernization process. The aim of this study was to develop and characterize bacterial cellulose-based (BC) wound dressings incorporated with green and red propolis extract (2 to 4%) and the active compounds p-coumaric acid and biochanin A (8 to 16 mg). The characterization of the nine developed samples (one control and eight active wound dressings) evidenced that the mechanics, physics, morphological, and barrier properties depended not only on the type of active principle incorporated onto the cellulosic matrix, but also on its concentration. Of note were the results found for transparency (28.59–110.62T600 mm−1), thickness (0.023–0.046 mm), swelling index (48.93–405.55%), water vapor permeability rate (7.86–38.11 g m2 day−1), elongation (99.13–262.39%), and antioxidant capacity (21.23–86.76 μg mL−1). The wound dressing based on BC and red propolis was the only one that presented antimicrobial activity. The permeation and retention test revealed that the wound dressing containing propolis extract presented the most corneal stratum when compared with viable skin. Overall, the developed wound dressing showed potential to be used for treatment against different types of dermal lesions, according to its determined proprieties.

Keywords: cellulose based; bacterial cellulose; lesion treatment; based wound; treatment; wound dressing

Journal Title: Pharmaceutics
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.