LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Structure, Properties, and Release Kinetics of the Polymer/Insect Repellent System Poly (l-Lactic Acid)/Ethyl Butylacetylaminopropionate (PLLA/IR3535)

The insect repellent ethyl butylacetylaminopropionate (IR3535) was used as a functional additive for poly (l-lactic acid) (PLLA) to modify its structure and mechanical properties and achieve insect repellency. PLLA/IR3535 mixtures… Click to show full abstract

The insect repellent ethyl butylacetylaminopropionate (IR3535) was used as a functional additive for poly (l-lactic acid) (PLLA) to modify its structure and mechanical properties and achieve insect repellency. PLLA/IR3535 mixtures at various compositions were prepared via melt extrusion. In the analyzed composition range of 0 to 23 m% IR3535, PLLA and IR3535 were miscible at the length scale represented by the glass transition temperature. Addition of IR3535 resulted in a significant decrease in the glass transition temperature of PLLA, as well as in the elastic modulus, indicating its efficiency as a plasticizer. All mixtures were amorphous after extrusion, though PLLA/IR3535 extrudates with an IR3535 content between 18 and 23 m% crystallized during long-term storage at ambient temperature, due to their low glass transition temperature. Quantification of the release of IR3535 into the environment by thermogravimetric analysis at different temperatures between 50 and 100 °C allowed the estimation of the evaporation rate at lower temperatures, suggesting an extremely low release rate with a time constant of the order of magnitude of 1–2 years at body temperature.

Keywords: plla ir3535; ethyl butylacetylaminopropionate; plla; ir3535; temperature; insect repellent

Journal Title: Pharmaceutics
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.