In this article, nisin(N)-loaded poly lactic-co-glycolic acid (PLGA) nanoparticles (NPs) were prepared using the single-solvent evaporation method with a rhamnolipid(R) cosurfactant. The antibacterial–antibiofilm effects of the prepared formulation and free… Click to show full abstract
In this article, nisin(N)-loaded poly lactic-co-glycolic acid (PLGA) nanoparticles (NPs) were prepared using the single-solvent evaporation method with a rhamnolipid(R) cosurfactant. The antibacterial–antibiofilm effects of the prepared formulation and free nisin were evaluated against S. aureus (ATCC 25923). The characterization of NPs was analyzed using scanning electron microscopy (SEM), Zetasizer and Fourier-transform infrared spectroscopy (FTIR). The drug encapsulation efficiency and loading capacity percentages of NPs were calculated by the spectrophotometric method. The drug release of N-loaded PVA-R-PLGA NPs was determined by the dialysis bag method. The antibacterial and antibiofilm activity of N-PVA-R-PLGA NPs was determined. PVA-R-PLGA-NPs were found to be spherical with sizes of ~140 nm, according to the SEM analysis and surface charge of N-PVA-R-PLGA NPs −53.23 ± 0.42 mV. The sustained release of N (≥72% after 6 h) was measured in PVA-R-PLGA-NPs. The encapsulation efficiency percentage of N-PVA-R-PLGA NP was 78%. The MIC values of free nisin and N-PVA-R-PLGA NPs were 256 μg/mL and 64 μg/mL, respectively. The antibiofilm inhibition percentages of free nisin and N-PVA-R-PLGA NPs were 28% and 72%, respectively. These results reveal that N-PVA-R-PLGA NPs are a promising formulation for use in infections caused by S. aureus compared to free nisin.
               
Click one of the above tabs to view related content.