LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Impact of Leucine and Magnesium Stearate on the Physicochemical Properties and Aerosolization Behavior of Wet Milled Inhalable Ibuprofen Microparticles for Developing Dry Powder Inhaler Formulation

Photo by paramir from unsplash

This study investigated the development and characterization of leucine and magnesium stearate (MgSt) embedded wet milled inhalable ibuprofen (IBF) dry powder inhaler (DPI) formulations. IBF microparticles were prepared by a… Click to show full abstract

This study investigated the development and characterization of leucine and magnesium stearate (MgSt) embedded wet milled inhalable ibuprofen (IBF) dry powder inhaler (DPI) formulations. IBF microparticles were prepared by a wet milling homogenization process and were characterized by SEM, FTIR, DSC, XRD and TGA. Using a Twin-Stage Impinger (TSI), the in vitro aerosolization of the formulations with and without carrier lactose was studied at a flow rate of 60± 5 L/min and the IBF was determined using a validated HPLC method. The flow properties were determined by the Carr’s Index (CI), Hausner Ratio (HR) and Angle of Repose (AR) of the milled IBF with 4–6.25% leucine and leucine containing formulations showed higher flow property than those of formulations without leucine. The fine particle fraction (FPF) of IBF from the prepared formulations was significantly (p = 0.000278) higher (37.1 ± 3.8%) compared to the original drug (FPF 3.7 ± 0.9%) owing to the presence of leucine, which enhanced the aerosolization of the milled IBF particles. Using quantitative phase analysis, the XPRD data revealed the crystallinity and accurate weight percentages of the milled IBF in the formulations. FTIR revealed no changes of the structural integrity of the milled IBF in presence of leucine or MgSt. The presence of 2.5% MgSt in the selected formulations produced the highest solubility (252.8 ± 0.6 µg/mL) of IBF compared to that of unmilled IBF (147.4 ± 1.6 µg/mL). The drug dissolution from all formulations containing 4–6.25% leucine showed 12.2–18.6% drug release in 2.5 min; however, 100% IBF dissolution occurred in 2 h whereas around 50% original and dry milled IBF dissolved in 2 h. The results indicated the successful preparation of inhalable IBF microparticles by the wet milling method and the developed DPI formulations with enhanced aerosolization and solubility due to the presence of leucine may be considered as future IBF formulations for inhalation.

Keywords: milled ibf; wet milled; leucine magnesium; magnesium stearate; milled inhalable; leucine

Journal Title: Pharmaceutics
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.