LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Layer-by-Layer Hollow Mesoporous Silica Nanoparticles with Tunable Degradation Profile

Photo from wikipedia

Silica nanoparticles (SNPs) have shown promise in biomedical applications such as drug delivery and imaging due to their versatile synthetic methods, tunable physicochemical properties, and ability to load both hydrophilic… Click to show full abstract

Silica nanoparticles (SNPs) have shown promise in biomedical applications such as drug delivery and imaging due to their versatile synthetic methods, tunable physicochemical properties, and ability to load both hydrophilic and hydrophobic cargo with high efficiency. To improve the utility of these nanostructures, there is a need to control the degradation profile relative to specific microenvironments. The design of such nanostructures for controlled combination drug delivery would benefit from minimizing degradation and cargo release in circulation while increasing intracellular biodegradation. Herein, we fabricated two types of layer-by-layer hollow mesoporous SNPs (HMSNPs) containing two and three layers with variations in disulfide precursor ratios. These disulfide bonds are redox-sensitive, resulting in a controllable degradation profile relative to the number of disulfide bonds present. Particles were characterized for morphology, size and size distribution, atomic composition, pore structure, and surface area. No difference was observed between in vitro cytotoxicity profiles of the fabricated nanoparticles at 24 h in the concentration range below 100 µg mL−1. The degradation profiles of particles were evaluated in simulated body fluid in the presence of glutathione. The results demonstrate that the composition and number of layers influence degradation rates, and particles containing a higher number of disulfide bridges were more responsive to enzymatic degradation. These results indicate the potential utility of layer-by-layer HMSNPs for delivery applications where tunable degradation is desired.

Keywords: silica nanoparticles; degradation profile; layer; degradation; layer layer; layer hollow

Journal Title: Pharmaceutics
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.