LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Development of Zeise’s Salt Derivatives Bearing Substituted Acetylsalicylic Acid Substructures as Cytotoxic COX Inhibitors

Photo by aqaisieh from unsplash

Zeise’s salt derivatives of the potassium trichlorido[η2-((prop-2-en/but-3-en)-1-yl)-2-acetoxybenzoate]platinate(II) type (ASA-Prop-PtCl3/ASA-But-PtCl3 derivatives) were synthesized and characterized regarding their structure, stability, and biological activity. It is proposed that the leads ASA-Prop-PtCl3 and ASA-But-PtCl3… Click to show full abstract

Zeise’s salt derivatives of the potassium trichlorido[η2-((prop-2-en/but-3-en)-1-yl)-2-acetoxybenzoate]platinate(II) type (ASA-Prop-PtCl3/ASA-But-PtCl3 derivatives) were synthesized and characterized regarding their structure, stability, and biological activity. It is proposed that the leads ASA-Prop-PtCl3 and ASA-But-PtCl3 interfere with the arachidonic acid cascade as part of their mode of action to reduce the growth of COX-1/2-expressing tumor cells. With the aim to increase the antiproliferative activity by strengthening the inhibitory potency against COX-2, F, Cl, or CH3 substituents were introduced into the acetylsalicylic acid (ASA) moiety. Each structural modification improved COX-2 inhibition. Especially compounds with F substituents at ASA-But-PtCl3 reached the maximum achievable inhibition of about 70% already at 1 µM. The PGE2 formation in COX-1/2-positive HT-29 cells was suppressed by all F/Cl/CH3 derivatives, indicating COX inhibitory potency in cellular systems. The CH3-bearing complexes showed the highest cytotoxicity in COX-1/2-positive HT-29 cells with IC50 values of 16–27 µM. In COX-negative MCF-7 cells, they were 2–3-fold less active. These data clearly demonstrate that it is possible to increase the cytotoxicity of ASA-Prop-PtCl3 and ASA-But-PtCl3 derivatives by enhancing COX-2 inhibition.

Keywords: salt derivatives; ptcl3; asa; asa ptcl3; zeise salt; acid

Journal Title: Pharmaceutics
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.