In this work, we demonstrate dispersion engineering of silicon nitride waveguide resonators with atomic layer deposition (ALD). We conducted theoretical and experimental analyses on the waveguide dispersion with air cladding,… Click to show full abstract
In this work, we demonstrate dispersion engineering of silicon nitride waveguide resonators with atomic layer deposition (ALD). We conducted theoretical and experimental analyses on the waveguide dispersion with air cladding, hafnium oxide (HfO2) cladding, and aluminum oxide (Al2O3) cladding. By employing ALD HfO2 as the cladding layer, the dispersion of waveguide can be tuned to a finer degree in the normal regime at a wavelength of 1550 nm. On the other hand, using ALD Al2O3 cladding provides the waveguide dispersion that spans regimes in normal, near-zero, and anomalous dispersion.
               
Click one of the above tabs to view related content.