LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Dimensional Analysis of Double-Track Microstructures in a Lithium Niobate Crystal Induced by Ultrashort Laser Pulses

Photo from wikipedia

Double-track microstructures were induced in the bulk of a z-cut lithium niobate crystal by 1030 nm 240 fs ultrashort laser pulses with a repetition rate of 100 kHz at variable… Click to show full abstract

Double-track microstructures were induced in the bulk of a z-cut lithium niobate crystal by 1030 nm 240 fs ultrashort laser pulses with a repetition rate of 100 kHz at variable pulse energies exceeding the critical Kerr self-focusing power. The microstructure topography was characterized by atomic force microscopy in piezoelectric response mode. The spatial positions of laser-induced modification regions inside lithium niobate in the case of laser beam propagation along the crystal optical axis can be directly predicted by simple analytical expressions under the paraxial approximation. A dimensional analysis of the morphology of the double-track structures revealed that both their length and width exhibit a monotonous increase with the pulse energy. The presented results have important implications for direct laser writing technology in crystalline dielectric birefringent materials, paving the way to control the high spatial resolution by means of effective energy deposition in modified regions.

Keywords: laser; double track; lithium niobate; niobate crystal; track microstructures

Journal Title: Photonics
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.