Underwater wireless optical communication (UWOC) is acknowledged as a useful way to transmit data in the ocean for short-distance applications. Carrying a UWOC device on mobile platforms is quite practical… Click to show full abstract
Underwater wireless optical communication (UWOC) is acknowledged as a useful way to transmit data in the ocean for short-distance applications. Carrying a UWOC device on mobile platforms is quite practical in ocean engineering, which is helpful to exploit its advantages. In application, such a platform needs a camera to observe the surroundings and guide its action. Since the majority of ocean is always dark, active illumination is necessary to imaging. When UWOC works in such an environment, its performance is affected by the illumination light noise. In this paper, we study the influence of underwater LED illumination on bidirectional UWOC with the Monte Carlo method. We simulate forward noise from LED illumination to the opposite receiver in the cooperative terminal, and the backscattering noise on the adjacent receiver in the same terminal. The results show that the forward noise is reduced with the increase of theabsorption coefficient, scattering coefficient, transmitting distance, and separated distance between receiver and the optical axis of LED. However, it becomes greater with the field of view (FOV) of the receiver. The backscattering noise is reduced with the increase of the absorption coefficient and separated distance between receiver and LED. However, it becomes greater with the FOV and scattering coefficient, while it has little relation with transmitting distance. In order to reduce these two kinds of noises, besides inserting an optical filter in the receivers and narrowing their FOV, the optical axis of LED light should keep away from the receivers. The results in this paper are helpful for UWOC application.
               
Click one of the above tabs to view related content.