LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Histone Deacetylase Inhibitors Increase the Embryogenic Potential and Alter the Expression of Embryogenesis-Related and HDAC-Encoding Genes in Grapevine (Vitis vinifera L., cv. Mencía)

Photo by cameramandan83 from unsplash

The low induction rates of somatic embryogenesis are one of the main limitations in its routine application in the grapevine (Vitis vinifera L.). The use of an induction medium containing… Click to show full abstract

The low induction rates of somatic embryogenesis are one of the main limitations in its routine application in the grapevine (Vitis vinifera L.). The use of an induction medium containing histone deacetylase inhibitors (trichostatin A and, mainly, sodium butyrate) resulted in an improvement of the embryogenic responses in grapevine (cv. Mencía) cotyledonary and recently germinated somatic embryos. The relative expression of several grapevine genes related to embryogenic competence or encoding histone deacetylase enzymes was studied in cotyledonary somatic embryos that were cultured in the presence of 0.5 mM sodium butyrate. The results showed a significant overexpression of the BBM and VvSERK2 genes after 24 h of culture, whereas the VvWOX2 gene was underexpressed less in treated versus untreated explants. The results suggest that the inhibitor may trigger a molecular response related to an increase in embryogenic competence and changes in the expression of associated genes. The treatment with sodium butyrate also produced significant variations in the expression of several histone deacetylase enzyme-encoding genes. These results may enhance the possibility of obtaining somatic embryos, reducing the seasonal constraints associated with the use of floral explants in grapevines.

Keywords: deacetylase; deacetylase inhibitors; grapevine vitis; vitis vinifera; histone deacetylase; increase embryogenic

Journal Title: Plants
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.