LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Genome-Wide Analyses of Aspartic Proteases on Potato Genome (Solanum tuberosum): Generating New Tools to Improve the Resistance of Plants to Abiotic Stress

Photo by kellysikkema from unsplash

Aspartic proteases are proteolytic enzymes widely distributed in living organisms and viruses. Although they have been extensively studied in many plant species, they are poorly described in potatoes. The present… Click to show full abstract

Aspartic proteases are proteolytic enzymes widely distributed in living organisms and viruses. Although they have been extensively studied in many plant species, they are poorly described in potatoes. The present study aimed to identify and characterize S. tuberosum aspartic proteases. Gene structure, chromosome and protein domain organization, phylogeny, and subcellular predicted localization were analyzed and integrated with RNAseq data from different tissues, organs, and conditions focused on abiotic stress. Sixty-two aspartic protease genes were retrieved from the potato genome, distributed in 12 chromosomes. A high number of intronless genes and segmental and tandem duplications were detected. Phylogenetic analysis revealed eight StAP groups, named from StAPI to StAPVIII, that were differentiated into typical (StAPI), nucellin-like (StAPIIIa), and atypical aspartic proteases (StAPII, StAPIIIb to StAPVIII). RNAseq data analyses showed that gene expression was consistent with the presence of cis-acting regulatory elements on StAP promoter regions related to water deficit. The study presents the first identification and characterization of 62 aspartic protease genes and proteins on the potato genome and provides the baseline material for functional gene determinations and potato breeding programs, including gene editing mediated by CRISPR.

Keywords: tuberosum; aspartic proteases; abiotic stress; potato genome; gene

Journal Title: Plants
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.