Radish (Raphanus sativus L.) is a vegetable cultivated worldwide because of its large succulent hypocotyls. The priming method initiates metabolic processes at early stages and regulates the metabolic events in… Click to show full abstract
Radish (Raphanus sativus L.) is a vegetable cultivated worldwide because of its large succulent hypocotyls. The priming method initiates metabolic processes at early stages and regulates the metabolic events in seed necessary for germination. This research was conducted to examine the influence of various priming treatments on physiological performance (germination, growth, lipid peroxidation, primary and secondary metabolism) and antioxidant activity of radish seedlings. On the basis of germination and growth characteristics, vigor index, and relative water content in leaves, it was confirmed that priming treatments with 0.01% ascorbic acid (AA) and 1% KNO3 improves the initial stages of radish development. Furthermore, the efficiency of AA as a priming agent was confirmed through the reduction of malondialdehyde (MDA) level compared to unprimed seedlings. On the other hand, hormopriming with indole-3-acetic acid (IAA) significantly increased the concentration of photosynthetic pigments and total soluble leaf proteins compared to non-primed seedlings. The highest content of total phenolic compounds, including flavonoids, were obtained after hormopriming with 1 mM IAA and halopriming with 1% MgSO4. On the basis of the percentage of inhibition of DPPH radicals, it was confirmed that treatments with IAA and AA can improve the antioxidant activity of radish seedlings. This study provides useful information regarding the possibilities of pregerminative metabolic modulation through the seed priming for the biochemical and physiological improvement of radish, and this topic should be further investigated in order to determine the potential use of AA and IAA as suitable priming agents in radish commercial production.
               
Click one of the above tabs to view related content.