Throughout evolution, plants have developed different strategies of responses and adaptations that allow them to survive in different conditions of abiotic stress. Aloe vera (L.) Burm.f. is a succulent CAM… Click to show full abstract
Throughout evolution, plants have developed different strategies of responses and adaptations that allow them to survive in different conditions of abiotic stress. Aloe vera (L.) Burm.f. is a succulent CAM plant that can grow in warm, semi-arid, and arid regions. Here, we tested the effects of preconditioning treatments of water availability (100, 50, and 25% of soil field capacity, FC) on the response of A. vera to prolonged drought growing in the hyper-arid core of the Atacama Desert. We studied leaf biomass, biochemical traits, and photosynthetic traits to assess, at different intervals of time, the effects of the preconditioning treatments on the response of A. vera to seven months of water deprivation. As expected, prolonged drought has deleterious effects on plant growth (a decrease of 55â65% in leaf thickness) and photosynthesis (a decrease of 54â62% in Emax). There were differences in the morphophysiological responses to drought depending on the preconditioning treatment, the 50% FC pretreatment being the threshold to better withstand prolonged drought. A diurnal increase in the concentration of malic acid (20â30 mg mgâ1) in the points where the dark respiration increased was observed, from which it can be inferred that A. vera switches its C3-CAM metabolism to a CAM idling mode. Strikingly, all A. vera plants stayed alive after seven months without irrigation. Possible mechanisms under an environmental context are discussed. Overall, because of a combination of morphophysiological traits, A. vera has the remarkable capacity to survive under severe and long-term drought, and further holistic research on this plant may serve to produce biotechnological solutions for crop production under the current scenario of climatic emergency.
               
Click one of the above tabs to view related content.