DHDPS is a key enzyme in the aspartate-derived lysine biosynthesis pathway and an evident object of study for biofortification strategies in plants. DHDPS isoforms with novel regulatory properties in Medicago… Click to show full abstract
DHDPS is a key enzyme in the aspartate-derived lysine biosynthesis pathway and an evident object of study for biofortification strategies in plants. DHDPS isoforms with novel regulatory properties in Medicago truncatula were demonstrated earlier and hypothesized to be involved in abiotic and biotic stress responses. Here, we present a phylogenetic analysis of the DHPDS gene family in land plants which establishes the existence of a legume-specific class of DHDPS, termed DHDPS B-type, distinguishable from the DHDPS A-type commonly present in all land plants. The G. max genome comprises two A-type DHDPS genes (Gm.DHDPS-A1; Glyma.09G268200, Gm.DHDPS-A2; Glyma.18G221700) and one B-type (Gm.DHDPS-B; Glyma.03G022300). To further investigate the expression pattern of the G. max DHDPS isozymes in different plant tissues and under various stress conditions, 461 RNA-seq experiments were exploited and re-analyzed covering two expression atlases, 13 abiotic and 5 biotic stress studies. Gm.DHDPS-B is seen almost exclusively expressed in roots and nodules in addition to old cotyledons or senescent leaves while both DHDPS A-types are expressed constitutively in all tissues analyzed with the highest expression in mature seeds. Furthermore, Gm.DHDPS-B expression is significantly upregulated in some but not all stress responses including salt stress, flooding, ethylene or infection with Phytophthora sojae and coincides with downregulation of DHDPS A-types. In conclusion, we demonstrate the potential of an in-depth RNA-seq re-analysis for the guidance of future experiments and to expand on current knowledge.
               
Click one of the above tabs to view related content.