LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

LC/MS Profiling and Gold Nanoparticle Formulation of Major Metabolites from Origanum majorana as Antibacterial and Antioxidant Potentialities

Photo by ngbates from unsplash

Origanum majoranum L. is a Lamiaceae medicinal plant with culinary and ethnomedical applications. Its biological and phytochemical profiles have been extensively researched. Accordingly, this study aimed to investigate the chemical… Click to show full abstract

Origanum majoranum L. is a Lamiaceae medicinal plant with culinary and ethnomedical applications. Its biological and phytochemical profiles have been extensively researched. Accordingly, this study aimed to investigate the chemical composition and the antibacterial and antioxidant properties of O. majoranum high features, as well as to search for techniques for activity optimization. A metabolomics study of the crude extract of O. majoranum using liquid chromatography-high-resolution electrospray ionization mass spectrometry (LC ± HR ± ESI ± MS) was conducted. Five fractions (petroleum ether, dichloromethane, ethyl acetate, n-butanol, and aqueous) were derived from the total extract of the aerial parts. Different chromatographic methods and NMR analysis were utilized to purify and identify the isolated phenolics (high features). Moreover, the antimicrobial, antibiofilm, and antioxidant activity of phenolics were performed. Results showed that metabolomic profiling of the crude extract of O. majoranum aerial parts revealed the presence of a variety of phytochemicals, predominantly phenolics, resulting in the isolation and identification of seven high-feature compounds comprising two phenolic acids, rosmarinic and caffeic acids, one phenolic diterpene, 7-methoxyepirosmanol, in addition to four flavonoids, quercetin, hesperitin, hesperidin, and luteolin. On the other hand, 7-methoxyepirosmanol (OM1) displayed the most antimicrobial and antioxidant potential. Such a phenolic principal activity improvement seems to be established after loading on gold nanoparticles.

Keywords: antibacterial antioxidant; nanoparticle formulation; antioxidant; profiling gold; gold nanoparticle

Journal Title: Plants
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.