LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Genome-Wide Association Study Reveals the Genetic Basis of Kernel and Cob Moisture Changes in Maize at Physiological Maturity Stage

Photo from wikipedia

Low moisture content (MC) and high dehydration rate (DR) at physiological maturity affect grain mechanical harvest, transport, and storage. In this study, we used an association panel composed of 241… Click to show full abstract

Low moisture content (MC) and high dehydration rate (DR) at physiological maturity affect grain mechanical harvest, transport, and storage. In this study, we used an association panel composed of 241 maize inbred lines to analyze ear moisture changes at physiological maturity stage. A genome-wide association study revealed nine significant SNPs and 91 candidate genes. One SNP (SYN38588) was repeatedly detected for two traits, and 15 candidate genes were scanned in the linkage disequilibrium regions of this SNP. Of these, genes Zm00001d020615 and Zm00001d020623 were individually annotated as a polygalacturonase (PG) and a copper transporter 5.1 (COPT5.1), respectively. Candidate gene association analysis showed that three SNPs located in the exons of Zm00001d020615 were significantly associated with the dehydration rate, and AATTAA was determined as the superior haplotype. All these findings suggested that Zm00001d020615 was a key gene affecting moisture changes of maize at the physiological maturity stage. These results have demonstrated the genetic basis of ear moisture changes in maize and indicated a superior haplotype for cultivating maize varieties with low moisture content and high dehydration rates.

Keywords: moisture; association; maturity stage; physiological maturity; moisture changes

Journal Title: Plants
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.