LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Physiological and Proteomic Responses of Cassava to Short-Term Extreme Cool and Hot Temperature

Photo by karim_manjra from unsplash

Temperature is one of the most critical factors affecting cassava metabolism and growth. This research was conducted to investigate the effects of short-term exposure to extreme cool (15 °C) and… Click to show full abstract

Temperature is one of the most critical factors affecting cassava metabolism and growth. This research was conducted to investigate the effects of short-term exposure to extreme cool (15 °C) and hot (45 °C) temperature on photosynthesis, biochemical and proteomics changes in potted plants of two cassava cultivars, namely Rayong 9 and Kasetsart 50. One-month-old plants were exposed to 15, 30, and 45 °C for 60 min in a temperature chamber under light intensity of 700 μmol m−2 s−1. Compared to the optimum temperature (30 °C), exposure to 15 °C resulted in 28% reduction in stomatal conductance (gs) and 62% reduction in net photosynthesis rate (Pn). In contrast, gs under 45 °C increased 2.61 folds, while Pn was reduced by 50%. The lower Pn but higher electron transport rate (ETR) of the cold-stressed plants indicated that a greater proportion of electrons was transported via alternative pathways to protect chloroplast from being damaged by reactive oxygen species (ROS). Moreover, malondialdehyde (MDA) contents, a marker related to the amount of ROS, were significantly higher at low temperature. Proteomics analysis revealed some interesting differentially expressed proteins (DEPs) including annexin, a multi-functional protein functioning in early events of heat stress signaling. In response to low-temperature stress, AP2/ERF domain-containing protein (a cold-related transcription factor) and glutaredoxin domain-containing protein (a component of redox signaling network under cold stress) were detected. Taken together, both cultivars were more sensitive to low than high temperature. Moreover, Rayong 9 displayed higher Pn under both temperature stresses, and was more efficient in controlling ROS under cold stress than Kasetsart 50.

Keywords: hot temperature; cool hot; temperature; extreme cool; short term

Journal Title: Plants
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.