LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effect of Salinity on Leaf Functional Traits and Chloroplast Lipids Composition in Two C3 and C4 Chenopodiaceae Halophytes

Photo from wikipedia

Salt stress is one of the most common abiotic kinds of stress. Understanding the key mechanisms of salt tolerance in plants involves the study of halophytes. The effect of salinity… Click to show full abstract

Salt stress is one of the most common abiotic kinds of stress. Understanding the key mechanisms of salt tolerance in plants involves the study of halophytes. The effect of salinity was studied in two halophytic annuals of Chenopodiaceae Salicornia perennans Willd. and Climacoptera crassa (Bied.) Botsch. These species are plants with C3 and C4-metabolism, respectively. We performed a comprehensive analysis of the photosynthetic apparatus of these halophyte species at different levels of integration. The C3 species S. perennans showed larger variation in leaf functional traits—both at the level of cell morphology and membrane system (chloroplast envelope and thylakoid). S. perennans also had larger photosynthetic cells, by 10–15 times, and more effective mechanisms of osmoregulation and protecting cells against the toxic effect of Na+. Salinity caused changes in photosynthetic tissues of C. crassa such as an increase of the mesophyll cell surface, the expansion of the interface area between mesophyll and bundle sheath cells, and an increase of the volume of the latter. These functional changes compensated for scarce CO2 supply when salinity increased. Overall, we concluded that these C3 and C4 Chenopodiaceae species demonstrated different responses to salinity, both at the cellular and subcellular levels.

Keywords: functional traits; leaf functional; effect salinity; salinity; chenopodiaceae

Journal Title: Plants
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.