LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The Barley Heavy Metal Associated Isoprenylated Plant Protein HvFP1 Is Involved in a Crosstalk between the Leaf Development and Abscisic Acid-Related Drought Stress Responses

Photo by kellysikkema from unsplash

The heavy metal associated isoprenylated plant proteins (HIPPs) are characterized by at least one heavy metal associated (HMA) domain and a C-terminal isoprenylation motif. Hordeum vulgare farnesylated protein 1 (HvFP1),… Click to show full abstract

The heavy metal associated isoprenylated plant proteins (HIPPs) are characterized by at least one heavy metal associated (HMA) domain and a C-terminal isoprenylation motif. Hordeum vulgare farnesylated protein 1 (HvFP1), a barley HIPP, is upregulated during drought stress, in response to abscisic acid (ABA) and during leaf senescence. To investigate the role of HvFP1, two independent gain-of-function lines were generated. In a physiological level, the overexpression of HvFP1 results in the delay of normal leaf senescence, but not in the delay of rapid, drought-induced leaf senescence. In addition, the overexpression of HvFP1 suppresses the induction of the ABA-related genes during drought and senescence, e.g., HvNCED, HvS40, HvDhn1. Even though HvFP1 is induced during drought, senescence and the ABA treatment, its overexpression suppresses the ABA regulated genes. This indicates that HvFP1 is acting in a negative feedback loop connected to the ABA signaling. The genome-wide transcriptomic analysis via RNA sequencing revealed that the gain-of-function of HvFP1 positively alters the expression of the genes related to leaf development, photomorphogenesis, photosynthesis and chlorophyll biosynthesis. Interestingly, many of those genes encode proteins with zinc binding domains, implying that HvFP1 may act as zinc supplier via its HMA domain. The results show that HvFP1 is involved in a crosstalk between stress responses and growth control pathways.

Keywords: stress; heavy metal; metal associated; senescence; hvfp1

Journal Title: Plants
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.