LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Comparison of Models for Quantification of Tomato Brown Rugose Fruit Virus Based on a Bioassay Using a Local Lesion Host

Photo by albrb from unsplash

Considering the availability of serological and molecular biological methods, the bioassay has been paled into insignificance, although it is the only experimental method that can be used to demonstrate the… Click to show full abstract

Considering the availability of serological and molecular biological methods, the bioassay has been paled into insignificance, although it is the only experimental method that can be used to demonstrate the infectivity of a virus. We compared goodness-of-fit and predictability power of five models for the quantification of tomato brown rugose fruit virus (ToBRFV) based on local lesion assays: the Kleczkowski model, Furumoto and Mickey models I and II, the Gokhale and Bald model (growth curve model), and the modified Poisson model. For this purpose, mechanical inoculations onto Nicotiana tabacum L. cv. Xanthi nc and N. glutionosa L. with defined virus concentrations were first performed with half-leaf randomization in a Latin square design. Subsequently, models were implemented using Python software and fitted to the number of local lesions. All models could fit to the data for quantifying ToBRFV based on local lesions, among which the modified Poisson model had the best prediction of virus concentration in spike samples based on local lesions, although data of individual indicator plants showed variations. More accurate modeling was obtained from the test plant N. glutinosa than from N. tabacum cv. Xanthi nc. The position of the half-leaves on the test plants had no significant effect on the number of local lesions.

Keywords: models quantification; tomato brown; brown rugose; model; virus; quantification tomato

Journal Title: Plants
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.