LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Chemical Defense against Herbivory in the Brown Marine Macroalga Padina gymnospora Could Be Attributed to a New Hydrocarbon Compound

Brown marine macroalga Padina gymnospora (Phaeophyceae, Ochrophyta) produces both secondary metabolites (phlorotannins) and precipitate calcium carbonate (CaCO3—aragonite) on its surface as potential defensive strategies against herbivory. Here, we have evaluated… Click to show full abstract

Brown marine macroalga Padina gymnospora (Phaeophyceae, Ochrophyta) produces both secondary metabolites (phlorotannins) and precipitate calcium carbonate (CaCO3—aragonite) on its surface as potential defensive strategies against herbivory. Here, we have evaluated the effect of natural concentrations of organic extracts (dichloromethane—DI; ethyl acetate—EA and methanol—ME, and three isolated fractions) and mineralized tissues of P. gymnospora as chemical and physical resistance, respectively, against the sea urchin Lytechinus variegatus through experimental laboratory feeding bioassays. Fatty acids (FA), glycolipids (GLY), phlorotannins (PH) and hydrocarbons (HC) were also characterized and/or quantified in extracts and fractions from P. gymnospora using nuclear magnetic resonance (NMR) and gas chromatography (GC) coupled to mass spectrometry (CG/MS) or GC coupled to flame ionization detector (FID) and chemical analysis. Our results showed that chemicals from the EA extract of P. gymnospora were significantly important in reducing consumption by L. variegatus, but the CaCO3 did not act as a physical protection against consumption by this sea urchin. An enriched fraction containing 76% of the new hydrocarbon 5Z,8Z,11Z,14Z-heneicosatetraene exhibited a significant defensive property, while other chemicals found in minor amounts, such as GLY, PH, saturated and monounsaturated FAs and CaCO3 did not interfere with the susceptibility of P. gymnospora to L. variegatus consumption. We suggest that the unsaturation of the 5Z,8Z,11Z,14Z-heneicosatetraene from P. gymnospora is probably an important structural characteristic responsible for the defensive property verified against the sea urchin.

Keywords: macroalga padina; brown marine; padina gymnospora; new hydrocarbon; gymnospora; marine macroalga

Journal Title: Plants
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.