LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Phosphorus Application Enhances Root Traits, Root Exudation, Phosphorus Use Efficiency, and Seed Yield of Soybean Genotypes

Photo from wikipedia

Phosphorus (P) is a vital macronutrient required for soybean growth and development but is a finite resource in agriculture worldwide. Low inorganic P availability in soil is often a significant… Click to show full abstract

Phosphorus (P) is a vital macronutrient required for soybean growth and development but is a finite resource in agriculture worldwide. Low inorganic P availability in soil is often a significant constraint for soybean production. However, little is known about the response of P supply on agronomic, root morphology, and physiological mechanisms of contrasting soybean genotypes at various growth stages and the possible effects of different P on soybean yield and yield components. Therefore, we conducted two concurrent experiments using the soil-filled pots with six genotypes (deep-root system: PI 647960, PI 398595, PI 561271, PI 654356; and shallow-root system: PI 595362, PI 597387) and two P levels [0 (P0) and 60 (P60) mg P kg−1 dry soil] and deep PVC columns with two genotypes (PI 561271 and PI 595362) and three P levels [0 (P0), 60 (P60), and 120 (P120) mg P kg−1 dry soil] in a temperature-controlled glasshouse. The genotype × P level interaction showed that increased higher P supply increased leaf area, shoot and root dry weights, total root length, shoot, root, and seed P concentrations and contents, P use efficiency (PUE), root exudation, and seed yield at different growth stages in both experiments. At the vegetative stage (Experiment 1), shallow-rooted genotypes with shorter life cycles had more root dry weight (39%) and total root length (38%) than deep-rooted genotypes with longer life cycles under different P levels. Genotype PI 654356 produced significantly higher (22% more) total carboxylates than PI 647960 and PI 597387 under P60 but not at P0. Total carboxylates positively correlated with root dry weight, total root length, shoot and root P contents, and physiological PUE. The deep-rooted genotypes (PI 398595, PI 647960, PI 654356, and PI 561271) had the highest PUE and root P contents. In Experiment 2, at the flowering stage, genotype PI 561271 had the greatest leaf area (202%), shoot dry weight (113%), root dry weight (143%), and root length (83%) relative to the short-duration, shallow-rooted genotype PI 595362 with external P applied (P60 and P120), with similar trends at maturity. PI 595362 had a greater proportion of carboxylates as malonate (248%), malate (58%), and total carboxylates (82%) than PI 561271 under P60 and P120 but no differences at P0. At maturity, the deep-rooted genotype PI 561271 had greater shoot, root, and seed P contents and PUE than the shallow-rooted genotype PI 595362 under increased P rates but no differences at P0. Further, the genotype PI 561271 had higher shoot (53%), root (165%), and seed yield (47%) than PI 595362 with P60 and P120 than P0. Therefore, inorganic P application enhances plant resistance to the soil P pool and maintains high soybean biomass production and seed yield.

Keywords: seed; root; shoot root; seed yield

Journal Title: Plants
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.