LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Eucalyptus globulus Leaf Aqueous Extract Differentially Inhibits the Growth of Three Bacterial Tomato Pathogens

Photo by jeremybishop from unsplash

As available tools for crop disease management are scarce, new, effective, and eco-friendly solutions are needed. So, this study aimed at assessing the antibacterial activity of a dried leaf Eucalyptus… Click to show full abstract

As available tools for crop disease management are scarce, new, effective, and eco-friendly solutions are needed. So, this study aimed at assessing the antibacterial activity of a dried leaf Eucalyptus globulus Labill. aqueous extract (DLE) against Pseudomonas syringae pv. tomato (Pst), Xanthomonas euvesicatoria (Xeu), and Clavibacter michiganensis michiganensis (Cmm). For this, the inhibitory activity of different concentrations of DLE (0, 15, 30, 45, 60, 75, 90, 105, 120, 135, and 250 g L−1) was monitored against the type strains of Pst, Xeu, and Cmm through the obtention of their growth curves. After 48 h, results showed that the pathogen growth was strongly inhibited by DLE, with Xeu the most susceptible species (15 g L−1 MIC and IC50), followed by Pst (30 g L−1 MIC and IC50), and Cmm (45 and 35 g L−1 MIC and IC50, respectively). Additionally, using the resazurin assay, it was possible to verify that DLE considerably impaired cell viability by more than 86%, 85%, and 69% after Pst, Xeu, and Cmm were incubated with DLE concentrations equal to or higher than their MIC, respectively. However, only the treatment with DLE at 120 g L−1 did not induce any hypersensitive response in all pathogens when treated bacterial suspensions were infiltrated onto tobacco leaves. Overall, DLE can represent a great strategy for the prophylactic treatment of tomato-associated bacterial diseases or reduce the application of environmentally toxic approaches.

Keywords: aqueous extract; mic ic50; growth; tomato; eucalyptus globulus

Journal Title: Plants
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.