LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Transcriptome Response of Metallicolous and a Non-Metallicolous Ecotypes of Noccaea goesingensis to Nickel Excess

Photo from wikipedia

Root transcriptomic profile was comparatively studied in a serpentine (TM) and a non-metallicolous (NTM) population of Noccaea goesingensis in order to investigate possible features of Ni hyperaccumulation. Both populations were… Click to show full abstract

Root transcriptomic profile was comparatively studied in a serpentine (TM) and a non-metallicolous (NTM) population of Noccaea goesingensis in order to investigate possible features of Ni hyperaccumulation. Both populations were characterised by contrasting Ni tolerance and accumulation capacity. The growth of the TM population was unaffected by metal excess, while the shoot biomass production in the NTM population was significantly lower in the presence of Ni in the culture medium. Nickel concentration was nearly six- and two-fold higher in the shoots than in the roots of the TM and NTM population, respectively. The comparison of root transcriptomes using the RNA-seq method indicated distinct responses to Ni treatment between tested ecotypes. Among differentially expressed genes, the expression of IRT1 and IRT2, encoding metal transporters, was upregulated in the TM population and downregulated/unchanged in the NTM ecotype. Furthermore, differences were observed among ethylene metabolism and response related genes. In the TM population, the expression of genes including ACS7, ACO5, ERF104 and ERF105 was upregulated, while in the NTM population, expression of these genes remained unchanged, thus suggesting a possible regulatory role of this hormone in Ni hyperaccumulation. The present results could serve as a starting point for further studies concerning the plant mechanisms responsible for Ni tolerance and accumulation.

Keywords: nickel; noccaea goesingensis; response; ntm population; non metallicolous; population

Journal Title: Plants
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.