LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Arbuscular Mycorrhizas Regulate Photosynthetic Capacity and Antioxidant Defense Systems to Mediate Salt Tolerance in Maize

Photo by kellysikkema from unsplash

Salt stress inhibits photosynthetic process and triggers excessive formation of reactive oxygen species (ROS). This study examined the role of arbuscular mycorrhizal (AM) association in regulating photosynthetic capacity and antioxidant… Click to show full abstract

Salt stress inhibits photosynthetic process and triggers excessive formation of reactive oxygen species (ROS). This study examined the role of arbuscular mycorrhizal (AM) association in regulating photosynthetic capacity and antioxidant activity in leaves of two maize genotypes (salt-tolerant JD52 and salt-sensitive FSY1) exposed to salt stress (100 mM NaCl) in soils for 21 days. The leaf water content, chlorophyll content, and photosynthetic capacity in non-mycorrhizal (NM) plants were decreased by salt stress, especially in FSY1, with less reduction in AM plants than NM plants. Salinity increased the activities of antioxidant enzymes (superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and glutathione reductase (GR)) in both genotypes regardless of AM inoculation, but decreased the contents of non-enzymatic antioxidants (reduced glutathione (GSH) and ascorbate (AsA)), especially in FSY1, with less decrease in AM plants than NM plants. The AM plants, especially JD52, maintained higher photosynthetic capacity, CO2 fixation efficiency, and ability to preserve membrane integrity than NM plants under salt stress, as also indicated by the higher antioxidant contents and lower malondialdehyde (MDA)/electrolyte leakage in leaves. To conclude, the higher salt tolerance in AM plants correlates with the alleviation of salinity-induced oxidative stress and membrane damage, and the better performance of photosynthesis could have also contributed to this effect through reduced ROS formation. The greater improvements in photosynthetic processes and antioxidant defense systems by AM fungi in FSY1 than JD52 under salinity demonstrate genotypic variation in antioxidant defenses for mycorrhizal amelioration of salt stress.

Keywords: stress; capacity antioxidant; salt stress; photosynthetic capacity

Journal Title: Plants
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.