LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Preparation and Characterization of Novel Polyvinylidene Fluoride/2-Aminobenzothiazole Modified Ultrafiltration Membrane for the Removal of Cr(VI) in Wastewater

Hexavalent chromium is one of the main heavy metal pollutants. As the environmental legislation becomes increasingly strict, seeking new technology to treat wastewater containing hexavalent chromium is becoming more and… Click to show full abstract

Hexavalent chromium is one of the main heavy metal pollutants. As the environmental legislation becomes increasingly strict, seeking new technology to treat wastewater containing hexavalent chromium is becoming more and more important. In this research, a novel modified ultrafiltration membrane that could be applied to adsorb and purify water containing hexavalent chromium, was prepared by polyvinylidene fluoride (PVDF) blending with 2-aminobenzothiazole via phase inversion. The membrane performance was characterized by evaluation of the instrument of membrane performance, infrared spectroscopy (FTIR), scanning electron microscope (SEM), and water contact angle measurements. The results showed that the pure water flux of the PVDF/2-aminobenzothiazole modified ultrafiltration membrane was 231.27 L/m2·h, the contact angle was 76.1°, and the adsorption capacity of chromium ion was 157.75 µg/cm2. The PVDF/2-aminobenzothiazole modified ultrafiltration membrane presented better adsorption abilities for chromium ion than that of the traditional PVDF membrane.

Keywords: polyvinylidene fluoride; ultrafiltration membrane; aminobenzothiazole modified; modified ultrafiltration; membrane

Journal Title: Polymers
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.