LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Highly Efficient Aromatic Amine Ligand/Copper(I) Chloride Catalyst System for the Synthesis of Poly(2,6-dimethyl-1,4-phenylene ether)

Photo by uzair_ali_22 from unsplash

Highly active catalyst systems for polymerizing 2,6-dimethylphenol were studied by using aromatic amine ligands and copper(I) chloride. The aromatic amine ligands employed were pyridine, 1-methylimidazole, 2-aminopyridine, 3-aminopyridine, and 4-aminopyridine. A… Click to show full abstract

Highly active catalyst systems for polymerizing 2,6-dimethylphenol were studied by using aromatic amine ligands and copper(I) chloride. The aromatic amine ligands employed were pyridine, 1-methylimidazole, 2-aminopyridine, 3-aminopyridine, and 4-aminopyridine. A mixture of chloroform and methanol (9:1, v/v) was used as a polymerization solvent. All experiments were performed with oxygen uptake measurement apparatus, while the reaction rate for each aromatic amine ligand-Cu catalyst system and the amount of by-product, 3,3′,5,5′-Tetramethyl-4,4′diphenoquinone (DPQ), were measured to determine the efficiency of the catalyst systems. The 4-aminopyridine/Cu (I) catalyst system was found to be extremely efficient in poly(2,6-dimethyl-1,4-phenylene ether) (PPE) synthesis; it had the fastest reaction rate of 6.98 × 10−4 mol/L·s and the lowest DPQ production. The relatively high basicity of 4-aminopyridne and the less steric hindrance arising from a coordination of Cu and 4-aminopyridine in this catalyst are responsible for the fast polymerization rate. When 2-aminoprydine (an isomer of 4-aminopyridine) was used as a ligand, however, no polymerization occurred probably due to steric hindrance.

Keywords: ligand; aromatic amine; catalyst; catalyst system

Journal Title: Polymers
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.