LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

New Condensation Polymer Precursors Containing Consecutive Silicon Atoms—Decaisopropoxycyclopentasilane and Dodecaethoxyneopentasilane—And Their Sol–Gel Polymerization

Photo from wikipedia

The sol–gel polymerization of alkoxysilanes is a convenient and widely used method for the synthesis of silicon polymers and silicon–organic composites. The development of new sol–gel precursors is very important… Click to show full abstract

The sol–gel polymerization of alkoxysilanes is a convenient and widely used method for the synthesis of silicon polymers and silicon–organic composites. The development of new sol–gel precursors is very important for obtaining new types of sol–gel products. New condensation polymer precursors containing consecutive silicon atoms—decaisopropoxycyclopentasilane (CPS) and dodecaethoxyneopentasilane (NPS)—were synthesized for the preparation of polysilane–polysiloxane material. The CPS and NPS xerogels were prepared by the sol–gel polymerization of CPS and NPS under three reaction conditions (acidic, basic and neutral). The CPS and NPS xerogels were characterized using N2 physisorption measurements (Brunauer–Emmett–Teller; BET and Brunauer-Joyner-Halenda; BJH), solid-state CP/MAS (cross-polarization/magic angle spinning) NMRs (nuclear magnetic resonances), TEM, and SEM. Their porosity and morphology were strongly affected by the structure of the precursors, and partial oxidative cleavage of Si-Si bonds occurred during the sol–gel process. The new condensation polymer precursors are expected to expand the choice of approaches for new polysilane–polysiloxane.

Keywords: new condensation; condensation polymer; gel polymerization; gel; polymer precursors; sol gel

Journal Title: Polymers
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.