A natural fiber reinforced composite, belonging to the class of eco composites, based on ethylene-propylene-terpolymer rubber (EPDM) and wood wastes were obtained by electron beam irradiation at 75, 150, 300,… Click to show full abstract
A natural fiber reinforced composite, belonging to the class of eco composites, based on ethylene-propylene-terpolymer rubber (EPDM) and wood wastes were obtained by electron beam irradiation at 75, 150, 300, and 600 kGy in atmospheric conditions and at room temperature using a linear accelerator of 5.5 MeV. The sawdust (S), in amounts of 5 and 15 phr, respectively, was used to act as a natural filler for the improvement of physical and chemical characteristics. The cross-linking effects were evaluated through sol-gel analysis, mechanical tests, and Fourier Transform Infrared FTIR spectroscopy comparatively with the classic method with dibenzoyl peroxide (P) applied on the same types of samples at high temperature. Gel fraction exhibits values over 98% but, in the case of P cross-linking, is necessary to add more sawdust (15 phr) to obtain the same results as in the case of electron beam (EB) cross-linking (5 phr/300 kGy). Even if the EB cross-linking and sawdust addition have a reinforcement effect on EPDM rubber, the medium irradiation dose of 300 kGy looks to be a limit to which or from which the properties of the composite are improved or deteriorated. The absorption behavior of the eco-composites was studied through water uptake tests.
               
Click one of the above tabs to view related content.