LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Improved Desulfurization Performance of Polyethyleneglycol Membrane by Incorporating Metal Organic Framework CuBTC

Photo by jordanmcdonald from unsplash

In this paper, copper benzene-1,3,5-tricarboxylate (CuBTC) was incorporated into polyethylenglyol (PEG) to prepare a mixed matrix membrane (MMM) for pervaporation desulfurization. The characterization results showed that the prepared CuBTC particles… Click to show full abstract

In this paper, copper benzene-1,3,5-tricarboxylate (CuBTC) was incorporated into polyethylenglyol (PEG) to prepare a mixed matrix membrane (MMM) for pervaporation desulfurization. The characterization results showed that the prepared CuBTC particles had an ideal octahedral shape and micropores. The Cu2+ in CuBTC interacts with thiophene via π-complexation, thus enhancing the separation performance of the hybrid membranes. The effect of CuBTC content and the operating condition on the pervaporation performance of the MMMs was investigated. An optimal pervaporation separation performance was acquired with a permeation flux of 2.21 kg/(m2·h) and an enrichment factor of 8.79, which were increased by 100% and 39% compared with the pristine PEG membrane. Moreover, the CuBTC-filled PEG membrane showed a good stability in the long-term desulfurization under a high operating temperature of 75 °C for five days.

Keywords: improved desulfurization; cubtc; desulfurization performance; membrane

Journal Title: Polymers
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.