LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Development of Poly (Lactide Acid) Foams with Thermally Expandable Microspheres

Photo from wikipedia

This study presents the investigation of different content of thermally expandable microsphere (EMS) type of a physical blowing agent added to polylactic acid (PLA). The effects of the different doses… Click to show full abstract

This study presents the investigation of different content of thermally expandable microsphere (EMS) type of a physical blowing agent added to polylactic acid (PLA). The effects of the different doses of EMS, processing temperatures, and d-lactide content of the polylactic acid were analyzed for foam properties and structures. We characterized the different PLAs and the physical blowing agent with different testing methods (gel permeation chromatography, rotational rheometry, isothermal thermogravimetric analysis, and thermomechanical analysis). The amounts of the foaming agent were 0.5, 1, 2, 4, 8 wt%, and processing temperatures were 190 °C, 210 °C, and 230 °C. The foam structures were produced by twin-screw extrusion. We used scanning electron microscopy to examine the cell structure of the foams produced, and carried out morphological and mechanical tests as well. The result of extrusion foaming of PLA using different amounts of EMS shows that an exponentially decreasing tendency of density reduction can be achieved, described by the following equation, ρ(x)=1.062·e−x7.038+0.03 (R2 = 0.947) at 190 °C. With increasing processing temperature, density decreases at a lower rate, due to the effect that the microspheres are unable to hold the pentane gas within the polymer shell structure. The d-lactide content of the PLAs does not have a significant effect on the density of the produced foam structures.

Keywords: development poly; lactide acid; poly lactide; acid foams; lactide; thermally expandable

Journal Title: Polymers
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.