LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Manuka Honey Reduces NETosis on an Electrospun Template Within a Therapeutic Window

Photo by byalevega from unsplash

Manuka honey, a topical wound treatment used to eradicate bacteria, resolve inflammation, and promote wound healing, is a focus in the tissue engineering community as a tissue template additive. However,… Click to show full abstract

Manuka honey, a topical wound treatment used to eradicate bacteria, resolve inflammation, and promote wound healing, is a focus in the tissue engineering community as a tissue template additive. However, its effect on neutrophil extracellular trap formation (NETosis) on a tissue engineering template has yet to be examined. As NETosis has been implicated in chronic inflammation and fibrosis, the reduction in this response within the wound environment is of interest. In this study, Manuka honey was incorporated into electrospun templates with large (1.7–2.2 µm) and small (0.25–0.5 µm) diameter fibers at concentrations of 0.1%, 1%, and 10%. Template pore sizes and honey release profiles were quantified, and the effect on the NETosis response of seeded human neutrophils was examined through fluorescence imaging and myeloperoxidase (MPO) analysis. The incorporation of 0.1% and 1% Manuka honey decreased NETosis on the template surface at both 3 and 6 h, while 10% honey exacerbated the NETosis response. Additionally, 0.1% and 1% Manuka honey reduced the MMP-9 release of the neutrophils at both timepoints. These data indicate a therapeutic window for Manuka honey incorporation into tissue engineering templates for the reduction in NETosis. Future in vivo experimentation should be conducted to translate these results to a physiological wound environment.

Keywords: template; honey; netosis; therapeutic window; manuka honey

Journal Title: Polymers
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.