The mechanically-enhanced urea-formaldehyde (UF) microcapsules are developed through a multi-step in situ polymerization method. Optical microscope (OM) and field emission scanning electron microscope (FE-SEM) prove that the microcapsules, 147.4 μm… Click to show full abstract
The mechanically-enhanced urea-formaldehyde (UF) microcapsules are developed through a multi-step in situ polymerization method. Optical microscope (OM) and field emission scanning electron microscope (FE-SEM) prove that the microcapsules, 147.4 μm in diameter with a shell thickness of 600 nm, are well-formed. From 1H-nuclear magnetic resonance (1H-NMR) analysis, we found that dicyclopentadiene (DCPD), a self-healing agent encapsulated by the microcapsules, occupies ca. 40.3 %(v/v) of the internal volume of a single capsule. These microcapsules are mixed with EPDM (ethylene-propylene-diene-monomer) and Grubbs’ catalyst via a solution mixing method, and universal testing machine (UTM) tests show that the composites with mechanically-enhanced microcapsules has ca. 47% higher toughness than the composites with conventionally prepared UF microcapsules, which is attributed to the improved mechanical stability of the microcapsule. When the EPDM/microcapsule rubber composites are notched, Fourier-transform infrared (FT-IR) spectroscopy shows that DCPD leaks from the broken microcapsule to the damaged site and flows to fill the notched valley, and self-heals as it is cured by Grubbs’ catalyst. The self-healing efficiency depends on the capsule concentration in the EPDM matrix. However, the self-healed EPDM/microcapsule rubber composite with over 15 wt% microcapsule shows an almost full recovery of the mechanical strength and 100% healing efficiency.
               
Click one of the above tabs to view related content.